Identification of qRL7, a major quantitative trait locus associated with rice root length in hydroponic conditions

نویسندگان

  • Huimin Wang
  • Xiaoming Xu
  • Xiaodeng Zhan
  • Rongrong Zhai
  • Weiming Wu
  • Xihong Shen
  • Gaoxing Dai
  • Liyong Cao
  • Shihua Cheng
چکیده

Root system development is an important target for improving yield in rice. Active roots that can take up nutrients more efficiently are essential for improving grain yield. In this study, we performed quantitative trait locus (QTL) analyses using 215 recombinant inbred lines derived from a cross between Xieqingzao B (XB), a maintainer line with short roots and R9308, a restorer line with long roots. Only a QTLs associated with root length were mapped on chromosomes 7. The QTL, named qRL7, was located between markers RM3859 and RM214 on chromosome 7 and explained 18.14-18.36% of the total phenotypic variance evaluated across two years. Fine mapping of qRL7 using eight BC3F3 recombinant lines mapped the QTL to between markers InDel11 and InDel17, which delimit a 657.35 kb interval in the reference cultivar Nipponbare. To determine the genotype classes for the target QTL in these BC3F3 recombinants, the root lengths of their BC3F4 progeny were investigated, and the result showed that qRL7 plays a crucial role in root length. The results of this study will increase our understanding of the genetic factors controlling root architecture, which will help rice breeders to breed varieties with deep, strong and vigorous root systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Mapping of Quantitative Trait Loci Associated with Salinity Tolerance in Rice (Oryza Sativa) Using SSR Markers

Salinity stress is one of the most widespread soil problems next to drought, in rice growing areas. ReducingSodium (Na+), while maintaining Potassium (K+) uptake in rice are traits that would aid in salinity tolerance.Therefore, the identification of quantitative trait loci (QTLs) associated with those for Na+ and K+uptake, will enable breeders to use marker-assisted selection...

متن کامل

Identification of major and minor genes associated with heading date in an indica × indica cross of rice (Oryza Sativa L.)

In this study, quantitative trait loci (QTLs) controlling rice heading date were detected in a F2:3 population derived from a cross between an indica rice variety, Tarom Mahalli, with early heading date, and an indica variety, Khazar, with late heading date. SSR linkage map was constructed using 74 polymorphic markers and 192 F2 individuals and covered a total of 1231.50 cM of rice genome. QTL ...

متن کامل

Mapping Quantitative Trait Loci Associated with Toot Traits Using Sequencing-Based Genotyping Chromosome Segment Substitution Lines Derived from 9311 and Nipponbare in Rice (Oryza sativa L.)

Identification of quantitative trait loci (QTLs) associated with rice root morphology provides useful information for avoiding drought stress and maintaining yield production under the irrigation condition. In this study, a set of chromosome segment substitution lines derived from 9311 as the recipient and Nipponbare as donor, were used to analysis root morphology. By combining the resequencing...

متن کامل

Identification of QTLs for new formed root architectural traits in rice (Oryza sativa L.) after transplantation

Transplanting has been the most widespread planting technique for rice production in Asia. It is estimated that more than 85% of rice production in china, and almost 100% in Northeast China adopted transplanting. The healthy and vigorous seeding can reduce thetransplanting shock’ and is the most important for final yield formation. The large root diameter, long root length, large surface area a...

متن کامل

Genetic Loci Governing Grain Yield and Root Development under Variable Rice Cultivation Conditions

Drought is the major abiotic stress to rice grain yield under unpredictable changing climatic scenarios. The widely grown, high yielding but drought susceptible rice varieties need to be improved by unraveling the genomic regions controlling traits enhancing drought tolerance. The present study was conducted with the aim to identify quantitative trait loci (QTLs) for grain yield and root develo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2013